
IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 5, Issue 3, March 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5372 296

Progressive Product Development with Agile

Y. Padma
1
,

Dr. P.V.S. Lakshmi

2
, A. Haritha

3
, G. Venu Gopal

4

Assistant Professor, Department of IT, P.V.P. Siddhartha Institute of Technology, Vijayawada
1, 3, 4

Professor, Department of IT, P.V.P. Siddhartha Institute of Technology, Vijayawada
2

Abstract: In the rapidly growing world, the concept of the traditional development needs to evolve. The agile

methodology is a more acceptable practice, based on producing software at a more rapid pace, while still maintaining

efficiency. This being particularly useful for smaller software production firms with limited resources. The agile

methodology emphasizes on the quality issue and provides a very stable backbone for today's software development. In

this report we discuss the history of agile methodology, in a general context, with listing of the agile manifesto and the

agile principles. We explain four of the existing agile methodologies with more focuses on the famous and mostly

known agile process: the Extreme Programming. The report includes a discussion about the critical success factors,

benefits and weakness of the agile methodologies based on a number of existing surveys with some real world

examples that shows some of Agile methodology's advantages and disadvantages.

Keywords: Agile Methodology, Progressive Product Development, Extreme Programming, Non-Agile Projects.

WHAT IS AGILE?

Agile methodology is one of the development processes to

build a new software substitutes the conventional

strategies. This differs widely from other software process

models like Waterfall model, V-Model, Iterative model

etc. Agile means „ability to think quickly and clearly‟ and

responding speedily to change, is a key mark of agile

software development. It helps teams respond to

changeability through incremental, iterative work

measures, known as sprints.

OVERVIEW

 In conventional software development methodologies a

project can take more than a few months or years to

complete and the customer need to wait until the end of

the project.

 Non-Agile projects will assign lot of time for

requirements elicitation, design, coding, testing and

UAT, before the deployment of a project.

 In contrast to this, agile projects have sprints which are

shorter in duration (Sprints/iterations can vary from 2

weeks to 2 months) during which predestined features

are developed and delivered.

 Agile projects can have one or more iterations and

deliver the complete product at the end of the final

iteration.

The five values of Agile Modelling are:

1. Communication. Models help us to communicate

between the team and project stakeholders and also

between developers in the team to the stakeholders.

2. Simplicity. It‟s very important for developers why the

models are essential for simplifying both software and the

software process.

3. Feedback. By using models/diagrams we can

effectively communicate our ideas through, and can get

the feedback easily and quickly.

Fig: Agile Development

4. Courage. It‟s very important because we need to take

important decisions and be able to change the way by

either refactoring or discarding our work, if anything goes

wrong.

5. Humility. Respect every individual‟s idea involved

with the project has equal value and they have their own

areas of expertise and have value to add to a project.

10 Key Principles of Agile

1. Active user involvement is imperative.

2. The team must be empowered to make decisions.

3. Requirements evolve but the timescale is fixed.

4. Capture requirements at a high level; lightweight &

visual.

5. Develop small, incremental releases and iterate.

6. Focus on frequent delivery of products.

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 5, Issue 3, March 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5372 297

7. Complete each feature before moving on to the next.

8. Apply the 80/20 rule.

9. Testing is integrated throughout the project lifecycle –

test early and often.

10. A collaborative & cooperative approach between all

stakeholders is essential.

With Agile Methodology

 In Agile approach, at first the project is divided into a

number of Iterations.

 Each iteration should be developed within the same.

 A working product with the expected functionality will

be delivered at the end of each iteration.

 Rather than taking more time to requirements

collection, in Agile, the project team will identify the

basic features of the product that can be met with and

will plan what features can be developed in the first

iteration.

 Test frequently each iteration for making sure of no

defects.

 Follows Collaborative approach

When to use Agile model:

 The agile gives us freedom to change. Changes can be

implemented at very low cost because of the

increments which are produced.

 To implement a new feature the developers need to

work for few days, or even only hours sometimes.

 In agile model limited planning is required to initiate

the project unlike the waterfall model. Agile accepts

the end user‟s needs are continuously changing in a

dynamic business world. Changes can be discussed and

features can be either added or removed based on

response. This can deliver an effective product to the

customer what they require or desire.

Types of Agile Methodologies

A variety of agile methodologies that can have the same

characteristics, but differs in implementation point of

view, each has its own practices and vocabulary. Here are

a few types:

1. Scrum

Scrum is one of the Agile movement. In Scrum, projects

are divided into succinct work cadences, known as sprints,

which are typically one to three weeks in duration. At the

end of each sprint, stakeholders and team members meet

to assess the project‟s advancement and plan its next steps.

This allows project‟s direction to be adjusted or reoriented

based on the work completed, not speculation or

predictions.

Scrum Roles

Scrum has three roles:

Product Owner, Scrum Master, and Team.

 Product Owner: The Product Owner is a person with

vision, authority, and availability. He is responsible for

constantly communicating the vision and priorities to the

development team. He must also represent the customer‟s

interests through requirements and priorities.

 Scrum Master: The Scrum Master acts as a medium

between the Product Owner and the team. He will never

manage the team. Instead, he works to remove any

impediments that are obstructing the team from achieving

its sprint goals. This helps the team remain creative and

productive while making its successes visible to the

Product Owner. The Scrum Master also works to advise

the Product Owner about how to maximize ROI (return on

investment) for the team.

Fig: Scrum Process

 Team: In the Scrum methodology, the development

team is responsible for self organizing to complete work.

A Scrum development team contains about seven cross-

functional members, plus or minus two individuals. For

any software projects, a team includes a mix of analysts,

software engineers, UI designers, architects, programmers,

testers and QA experts, and. To each sprint, the team is

responsible for determining how to complete the work.

The team has a good independence and responsibility to

meet the goals of the sprint.

EXTREME PROGRAMMING (XP)

XP is also one of the most popular agile methodologies.

XP is a well-organized approach to deliver high-quality

software quickly and continuously and openness to

changing customer needs. It promotes high customer

involvement, rapid criticism, constant testing and

planning, and close teamwork deliver working software at

very frequent intervals, usually every 1-3 weeks.

The XP is based on four simple values – simplicity,

communication, feedback, and courage and twelve

supporting practices:

1. Planning Game

2. Small Releases

3. Customer Acceptance Tests

4. Simple Design

5. Pair Programming

6. Test-Driven Development

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 5, Issue 3, March 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5372 298

7. Refactoring

8. Continuous Integration

9. Collective Code Ownership

10. Coding Standards

11. Metaphor

12. Sustainable Pace

Fig: Extreme Programming Practices (XP)

In XP, the “Customer” communicates directly with the

development team to describe and prioritize granular units

of functionality referred to as “User Stories” need the

software should fulfil. User stories help the team to

estimate the time and resources necessary to build the

release and to define user acceptance tests.

To create a release plan, the team breaks up the

development tasks into iterations. The release plan defines

each iteration plan, which drives the development for that

iteration. At the end of an iteration, users perform

acceptance tests against the user stories. If they find bugs,

fixing the bugs becomes a step in the next iteration.

Iterative user acceptance testing can result in release of the

software. To guarantee high quality software and to get the

better yielding, some supportive, trivial framework should

be there to guide the team.

Table: Summarizing and comparison of different agile

techniques

DSDM: Dynamic system development method, XP:

Extreme programming, ASD: Adaptive software

development.

BENEFITS OF AGILE METHODOLOGY

 Customer satisfaction with quick, unremitting delivery

of software.

 Rather than process and tools people and interactions

are emphasized

 Clients, designers, developers and testers continuously

interact with each other.

 Working software is delivered frequently.

 Easily adapts to changing conditions.

LIMITATIONS OF AGILE METHODOLOGY

 As the requirements are changeable, it‟s difficult to

predict the expected result.

 Difficult to estimate the effort required for the project

at the initial stage of the software development.

 Lack of importance on necessary designing and

documentation.

CONCLUSION

Agile development methodology addresses the need of the

today‟s business environments. The methods offer a fast

development strategy for the software development houses

with a higher level of the product‟s quality, performance

and control. Furthermore, the agile method looks primarily

to satisfy the customer. This is a direct goal of the

development process. Agile method achieves customer

satisfaction more than other traditional methods. It makes

the customer part of the team, so that the customer will be

able to see the work‟s progress and he/she can be satisfied

from early stages. There are some principles we should

follow when we develop using the agile method.

Implementation of these principles depends on the nature

of the project.

Some of the agile methods that are already in existence

represent agile principles in different ways for different

type of views. The six agile methods include: Feature

Driven Development (FDD), eXtreme Programming (XP),

Adaptive Software Development (ASD), Crystal, SCRUM

and Dynamic Software Development Method (DSDM).

These methods share some of the practices and features

but still represent a unique way of developing the system.

REFERENCES

[1] Agile Manifesto, 2001. Agile manifesto and principles: Manifesto
for agile software development. http://agilemanifesto.org.

[2] Pressman, R.S., 2005. Software Engineering: A Practitioners

Approach. 6th Edn. McGraw Hill, New York.
[3] http://agilemethodology.org/

[4] http://www.allaboutagile.com/

[5] B. Boehm, Get ready for agile methods, with care, IEEE Computer

35 (1) (2002) 64–69.

http://www.allaboutagile.com/

